Estimates for Neuman-Sándor mean by power means and their relative errors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for Neuman–sándor Mean by Power Means and Their Relative Errors

For a,b > 0 with a = b , let NS (a,b) denote the Neuman-Sándor mean defined by NS (a,b) = a−b 2arcsinh a−b a+b and Ap (a,b) , Lp (a,b) denote the r -order power and Lehmer means. Based on our earlier worker [27], we prove that αpAp < NS < Ap and Ap < NS βpAp holds if and only if p 4/3 and p p0 , respectively, where αp = ( 21/p−1 ) / ln(1+ √ 2) if p ∈ [1/4/3,∞), βp = ⎪⎨ ⎪⎩ NS (1,x0)/Ap (1,x0) if...

متن کامل

Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means

In the article, we prove that the double inequality [Formula: see text] holds for [Formula: see text] with [Formula: see text] if and only if [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] denote the Neuman-Sándor, logarithmic and second Seiffert means of two positive numbers a and b, respectively.

متن کامل

Bounds of the Neuman-Sándor Mean Using Power and Identric Means

and Applied Analysis 3 It is the aim of this paper to find the best possible lower power mean bound for the Neuman-Sándor mean M(a, b) and to present the sharp constants α and β such that the double inequality α < M(a, b) I (a, b) < β (17) holds for all a, b > 0 with a ̸ = b. 2. Main Results Theorem 1. p0 = (log 2)/ log [2 log(1 + √2)] = 1.224 . . . is the greatest value such that the inequality...

متن کامل

Optimal convex combination bounds of geometric and Neuman means for Toader-type mean

In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text], [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] are the Toader, geometric, arithmetic and two Neu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2013

ISSN: 1846-579X

DOI: 10.7153/jmi-07-65